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3.6. (a) Assuming that the total number of microstates accessible to a given statistical system is €2,
show that the entropy of the system, as given by equation (3.3.13), is maximum when all
states are equally likely to occur.

(b) If, on the other hand, we have an ensemble of systems sharing energy (with mean value E),
then show that the entropy, as given by the same formal expression, is maximum when
P; = exp(—BE;), A being a constant to be determined by the given value of E.

(c) Further, if we have an ensemble of systems sharing energy (with mean value E) and also
sharing particles (with mean value N), then show that the entropy, given by a similar
expression, is maximum when P, ; oc exp(—a N, — 8E;), @ and 8 being constants to be
determined by the given values of N and E.

3.11. Determine the work done on a gas and the amount of heat absorbed by it during a compression
from volume V) to volume V3, following the law PV = const.

3.12. Ifthe “free volume” V of a classical system is defined by the equation
] _ N
e :fe{U—U:q;wkT HdSQE'»
i=1

where U is the average potential energy of the system and U(g;) the actual potential energy as a
function of the molecular configuration, then show that

V (2xmkT\*? L5
N h? 2
In what sense is it justified to refer to the quantity V as the “free volume” of the system?

Substantiate your answer by considering a particular case — for example, the case of a hard sphere
gas.

S=Nk {ln

3.13. (a) Evaluate the partition function and the major thermodynamic properties of an ideal gas
consisting of N} molecules of mass m; and N> molecules of mass m», confined to a space
of volume V at temperature T. Assume that the molecules of a given kind are mutually
indistinguishable, while those of one kind are distinguishable from those of the other kind.

(b) Compare your results with the ones pertaining to an ideal gas consisting of (N1 + Nz2)
molecules, all of one kind, of mass m, such that m(N, + N») = my Ny + maNo.
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3.15.

3.16.

3.18.

3.20.

Show that the partition function Qn (V, T) of an extreme relativistic gas consisting of N monatomic
molecules with energy-momentum relationship £ = pc, ¢ being the speed of light, is given by

N
1 kT?

Study the thermodynamics of this system, checking in particular that

1 4
PV:EU’ U/N =3kT, and }f:g.

Next, using the inversion formula (3.4.7), derive an expression for the density of states g(E) of this
system.

Consider a system similar to the one in the preceding problem but consisting of 3V particles
moving in one dimension. Show that the partition function in this case is given by

1 kT\ 3N
QD= G [ZL(E)} ’

L being the “length” of the space available. Compare the thermodynamics and the density of states
of this system with the corresponding quantities obtained in the preceding problem.

Show that for a system in the canonical ensemble

(AE)) = k2 {1"4 (%) +ZTan}-

Vv

Verify that for an ideal gas

AENH\ 2 [(AEV 8
(F) =3y o (F) = ot
Show that, for a statistical systém in which the iﬁterparticle pnténtial .energy u(ryisa
homogeneous function (of degree n) of the particle coordinates, the virial 'V is given by

V=3PV —nUu
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and, hence, the mean kinetic energy K by

1 1
K=—3V=5@PV+nl)=

3PV + nE);

it 2) CPV A nE)

here, U denotes the mean potential energy of the system while E = K + U. Note that this result
holds not only for a classical system but for a quantum-mechanical one as well.

3.24. Show that in the relativistic case the equipartition theorem takes the form
(mou? (1 —u? /ey~ 1%y = 3kT,

where n1y is the rest mass of the particle and u its speed. Check that in the extreme relativistic case
the mean thermal energy per particle is twice its value in the nonrelativistic case.

3.25. Develop a kinetic arglu;l}aflt to show that in a noninteracting system the average value of the
quantity }_; piq; is precisely equal to 3PV. Hence show that, regardless of relativistic

considerations, PV = NkT.
3.26. The energy eigenvalues of an s-dimensional harmonic oscillator can be written as

gj=(j+s/2)hw; j=0,1,2,...

Show that the jth energy level has a multiplicity (7 +s— 1)! /j! (s — 1)!. Evaluate the partition
function, and the major thermodynamic properties, of a system of N such oscillators, and compare
your results with a corresponding system of sV one-dimensional oscillators. Show, in particular,
that the chemical potential pu; = su;.

3.27. Obtain an asymptbtic expre'ss_ion for the quantity Ing(E) for a system of N quantum-mechanical
harmonic oscillators by using the inversion formula (3.4.7) and the partition function (3.8.15).

Hence show that

s [ E 4 1 1 E N 1 E 1 1 E 1
Nk \Nho  2)™\Nhe "2) \Nheo 2) ™\ Nawo 2/
[Hint: Employ the Darwin-Fowler method.]
3.29. The potential energy of a one-dimensional, anharmonic oscillator may be written as

Vi) =cq” —gq° —fq',

where c, g, and f are positive constants; quite generally, g and f may be assumed to be very small
in value. Show that the leading contribution of anharmonic terms to the heat capacity of the
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oscillator, assumed classical, is given by

3.,(f 5g
zﬁ(?+a§)T

and, to the same order, the mean value of the position coordinate g is given by

3.30.

3.32.

3 gkT

4 ¢
The energy levels of a quantum-mechanical, one-dimensional, anharmonic oscillator may be
approximated as

2
1 1
8;1:(n+ﬁ)ﬁw—x(n+§) ﬁ»w, n:0l1l2l--'

The parameter x, usually < 1, represents the degree of anharmonicity. Show that, to the first order
in x and the fourth order in u(= hw/kT), the specific heat of a system of N such oscillators is given

- _i 2 L 4 4 l.'.i 3
C—Nk[(]. le + u)+ x( H)]

Note that the correction term here increases with temperature.

The quantum states available to a given physical system are (i) a group of g1 equally likely states,
with a common energy £ and (ii) a group of g» equally likely states, with a common energy e2 > &;.
Show that this entropy of the system is given by

S=—kip1In(p,/g1) +p2In(p2/g2)],

where p; and p» are, respectively, the probabilities of the system being in a state belonging to group
lortogroup2: py +p2 =1.
(a) Assuming that the p; are given by a canonical distribution, show that

X
S=k|lng; +In{l1+( }e"“‘}+—],
[ 8 g/8n I+ (g /e
where x = (e2 — £1)/kT, assumed positive. Compare the special case g = g» = 1 with that of the
Fermi oscillator of the preceding problem.
(b) Verify the foregoing expression for S by deriving it from the partition function of the system.
(c) Checkthatat T — 0, S — klng,. Interpret this result physically.



