موال بای میشادی برای درس مکانیک آماری کارثناسی ارشد از فصل ۳

(Reference: Statistical Mechanics, Third Edition, R. K. Pathria)

- **3.6.** (a) Assuming that the total number of microstates accessible to a given statistical system is Ω , show that the entropy of the system, as given by equation (3.3.13), is maximum when all Ω states are equally likely to occur.
 - (b) If, on the other hand, we have an ensemble of systems sharing energy (with mean value \overline{E}), then show that the entropy, as given by the same formal expression, is maximum when $P_T \propto \exp(-\beta E_T)$, β being a constant to be determined by the given value of \overline{E} .
 - (c) Further, if we have an ensemble of systems sharing energy (with mean value \overline{E}) and also sharing particles (with mean value \overline{N}), then show that the entropy, given by a similar expression, is maximum when $P_{r,s} \propto \exp(-\alpha N_r \beta E_s)$, α and β being constants to be determined by the given values of \overline{N} and \overline{E} .
- **3.11.** Determine the work done on a gas and the amount of heat absorbed by it during a compression from volume V_1 to volume V_2 , following the law $PV^n = \text{const.}$
- **3.12.** If the "free volume" \overline{V} of a classical system is defined by the equation

$$\overline{V}^N = \int e^{\{\overline{U} - U(\boldsymbol{q}_i)\}/kT} \prod_{i=1}^N d^3 q_i,$$

where \overline{U} is the average potential energy of the system and $U(q_i)$ the actual potential energy as a function of the molecular configuration, then show that

$$S = Nk \left[\ln \left\{ \frac{\overline{V}}{N} \left(\frac{2\pi mkT}{h^2} \right)^{3/2} \right\} + \frac{5}{2} \right].$$

In what sense is it justified to refer to the quantity \overline{V} as the "free volume" of the system? Substantiate your answer by considering a particular case — for example, the case of a hard sphere gas.

- **3.13.** (a) Evaluate the partition function and the major thermodynamic properties of an ideal gas consisting of N_1 molecules of mass m_1 and N_2 molecules of mass m_2 , confined to a space of volume V at temperature T. Assume that the molecules of a given kind are mutually indistinguishable, while those of one kind are distinguishable from those of the other kind.
 - (b) Compare your results with the ones pertaining to an ideal gas consisting of $(N_1 + N_2)$ molecules, *all of one kind*, of mass m, such that $m(N_1 + N_2) = m_1N_1 + m_2N_2$.

موال بای مینهادی برای درس مکانیک آماری کارثناسی ارشد از فصل ۳

(Reference: Statistical Mechanics, Third Edition, R. K. Pathria)

3.15. Show that the partition function $Q_N(V,T)$ of an *extreme* relativistic gas consisting of N monatomic molecules with energy–momentum relationship $\varepsilon = pc$, c being the speed of light, is given by

$$Q_N(V,T) = \frac{1}{N!} \left\{ 8\pi V \left(\frac{kT}{hc} \right)^3 \right\}^N.$$

Study the thermodynamics of this system, checking in particular that

$$PV = \frac{1}{3}U$$
, $U/N = 3kT$, and $\gamma = \frac{4}{3}$.

Next, using the inversion formula (3.4.7), derive an expression for the density of states g(E) of this system.

3.16. Consider a system similar to the one in the preceding problem but consisting of 3*N* particles moving in one dimension. Show that the partition function in this case is given by

$$Q_{3N}(L,T) = \frac{1}{(3N)!} \left[2L \left(\frac{kT}{hc} \right) \right]^{3N},$$

L being the "length" of the space available. Compare the thermodynamics and the density of states of this system with the corresponding quantities obtained in the preceding problem.

3.18. Show that for a system in the canonical ensemble

$$\langle (\Delta E)^3 \rangle = k^2 \left\{ T^4 \left(\frac{\partial C_V}{\partial T} \right)_V + 2T^3 C_V \right\}.$$

Verify that for an ideal gas

$$\left\langle \left(\frac{\Delta E}{U}\right)^2 \right\rangle = \frac{2}{3N}$$
 and $\left\langle \left(\frac{\Delta E}{U}\right)^3 \right\rangle = \frac{8}{9N^2}$.

3.20. Show that, for a statistical system in which the interparticle potential energy $u(\mathbf{r})$ is a homogeneous function (of degree n) of the particle coordinates, the *virial* \mathcal{V} is given by

$$\mathbf{v} = -3PV - nU$$

موال ای مینهادی برای درس مکانیک آماری کارثناسی ارشد از فصل ۳

(Reference: Statistical Mechanics, Third Edition, R. K. Pathria)

and, hence, the mean kinetic energy K by

$$K = -\frac{1}{2}\mathcal{V} = \frac{1}{2}(3PV + nU) = \frac{1}{(n+2)}(3PV + nE);$$

here, U denotes the *mean potential energy* of the system while E = K + U. Note that this result holds not only for a classical system but for a quantum-mechanical one as well.

3.24. Show that in the relativistic case the equipartition theorem takes the form

$$\langle m_0 u^2 (1 - u^2/c^2)^{-1/2} \rangle = 3kT$$
,

where m_0 is the rest mass of the particle and u its speed. Check that in the extreme relativistic case the mean thermal energy per particle is twice its value in the nonrelativistic case.

- **3.25.** Develop a *kinetic* argument to show that in a noninteracting system the average value of the quantity $\sum_i p_i \dot{q}_i$ is precisely equal to 3PV. Hence show that, regardless of relativistic considerations, PV = NkT.
- 3.26. The energy eigenvalues of an s-dimensional harmonic oscillator can be written as

$$\varepsilon_i = (j + s/2)\hbar\omega; \quad j = 0, 1, 2, \dots$$

Show that the jth energy level has a multiplicity (j+s-1)!/j!(s-1)!. Evaluate the partition function, and the major thermodynamic properties, of a system of N such oscillators, and compare your results with a corresponding system of sN one-dimensional oscillators. Show, in particular, that the chemical potential $\mu_s = s\mu_1$.

3.27. Obtain an asymptotic expression for the quantity $\ln g(E)$ for a system of N quantum-mechanical harmonic oscillators by using the inversion formula (3.4.7) and the partition function (3.8.15). Hence show that

$$\frac{S}{Nk} = \left(\frac{E}{N\hbar\omega} + \frac{1}{2}\right) \ln\left(\frac{E}{N\hbar\omega} + \frac{1}{2}\right) - \left(\frac{E}{N\hbar\omega} - \frac{1}{2}\right) \ln\left(\frac{E}{N\hbar\omega} - \frac{1}{2}\right).$$

[Hint: Employ the Darwin–Fowler method.]

3.29. The potential energy of a one-dimensional, anharmonic oscillator may be written as

$$V(q) = cq^2 - gq^3 - fq^4,$$

where c, g, and f are positive constants; quite generally, g and f may be assumed to be very small in value. Show that the leading contribution of anharmonic terms to the heat capacity of the

موال پای میشادی برای درس مکانیک آماری کارثناسی ارشد از فصل ۳

(Reference: Statistical Mechanics, Third Edition, R. K. Pathria)

oscillator, assumed classical, is given by

$$\frac{3}{2}k^2\left(\frac{f}{c^2} + \frac{5}{4}\frac{g^2}{c^3}\right)T$$

and, to the same order, the mean value of the position coordinate q is given by

$$\frac{3}{4} \frac{gkT}{c^2}$$

3.30. The energy levels of a quantum-mechanical, one-dimensional, *anharmonic* oscillator may be approximated as

$$\varepsilon_n = \left(n + \frac{1}{2}\right)\hbar\omega - x\left(n + \frac{1}{2}\right)^2\hbar\omega; \quad n = 0, 1, 2, \dots$$

The parameter x, usually $\ll 1$, represents the degree of anharmonicity. Show that, to the first order in x and the fourth order in $u (\equiv \hbar \omega / kT)$, the specific heat of a system of N such oscillators is given by

$$C = Nk \left[\left(1 - \frac{1}{12}u^2 + \frac{1}{240}u^4 \right) + 4x \left(\frac{1}{u} + \frac{1}{80}u^3 \right) \right].$$

Note that the correction term here *increases* with temperature.

3.32. The quantum states available to a given physical system are (i) a group of g_1 equally likely states, with a common energy ε_1 and (ii) a group of g_2 equally likely states, with a common energy $\varepsilon_2 > \varepsilon_1$. Show that this entropy of the system is given by

$$S = -k[p_1 \ln(p_1/g_1) + p_2 \ln(p_2/g_2)],$$

where p_1 and p_2 are, respectively, the probabilities of the system being in a state belonging to group 1 or to group 2: $p_1 + p_2 = 1$.

(a) Assuming that the p_i are given by a canonical distribution, show that

$$S = k \left[\ln g_1 + \ln\{1 + (g_2/g_1)e^{-x}\} + \frac{x}{1 + (g_1/g_2)e^x} \right],$$

where $x = (\varepsilon_2 - \varepsilon_1)/kT$, assumed positive. Compare the special case $g_1 = g_2 = 1$ with that of the Fermi oscillator of the preceding problem.

- **(b)** Verify the foregoing expression for *S* by deriving it from the partition function of the system.
- (c) Check that at $T \to 0$, $S \to k \ln g_1$. Interpret this result physically.